admaya ads..

dna fingerprinting

Thursday, 3 March 2011
Like the fingerprints that came into use by detectives and police labs during the 1930s, each person has a unique DNA fingerprint. Unlike a conventional fingerprint that occurs only on the fingertips and can be altered by surgery, a DNA fingerprint is the same for every cell, tissue, and organ of a person. It cannot be altered by any known treatment. Consequently, DNA fingerprinting is rapidly becoming the primary method for identifying and distinguishing among individual human beings.
An additional application of DNA fingerprint technology is the diagnosis of inherited disorders in adults, children, and unborn babies. The technology is so powerful that, for example, even the blood-stained clothing of Abraham Lincoln could be analyzed for evidence of a genetic disorder called Marfan's Syndrome.

The Structure of DNA

The characteristics of all living organisms, including humans, are essentially determined by information contained within DNA that they inherit from their parents. The molecular structure of DNA can be imagined as a zipper with each tooth represented by one of four letters (A, C, G, or T), and with opposite teeth forming one of two pairs, either A-T or G-C. The letters A, C, G, and T stand for adenine, cytosine, guanine, and thymine, the basic building blocks of DNA. The information contained in DNA is determined primarily by the sequence of letters along the zipper. For example, the sequence ACGCT represents different information than the sequence AGTCC in the same way that the word "POST" has a different meaning from "STOP" or "POTS," even though they use the same letters. The traits of a human being are the result of information contained in the DNA code.
Living organisms that look different or have different characteristics also have different DNA sequences. The more varied the organisms, the more varied the DNA sequences. DNA fingerprinting is a very quick way to compare the DNA sequences of any two living organisms.

Making DNA Fingerprints

DNA fingerprinting is a laboratory procedure that requires six steps:
1: Isolation of DNA. DNA must be recovered from the cells or tissues of the body. Only a small amount of tissue - like blood, hair, or skin - is needed. For example, the amount of DNA found at the root of one hair is usually sufficient.
2: Cutting, sizing, and sorting. Special enzymes called restriction enzymes are used to cut the DNA at specific places. For example, an enzyme called EcoR1, found in bacteria, will cut DNA only when the sequence GAATTC occurs. The DNA pieces are sorted according to size by a sieving technique called electrophoresis. The DNA pieces are passed through a gel made from seaweed agarose (a jelly-like product made from seaweed). This technique is the biotechnology equivalent of screening sand through progressively finer mesh screens to determine particle sizes.
3: Transfer of DNA to nylon. The distribution of DNA pieces is transferred to a nylon sheet by placing the sheet on the gel and soaking them overnight.
4-5: Probing. Adding radioactive or colored probes to the nylon sheet produces a pattern called the DNA fingerprint. Each probe typically sticks in only one or two specific places on the nylon sheet.
6: DNA fingerprint. The final DNA fingerprint is built by using several probes (5-10 or more) simultaneously. It resembles the bar codes used by grocery store scanners.

0 comments:

Post a Comment