admaya ads..

Molecular Genitics

Tuesday, 15 March 2011
The physical carrier of inheritance

While the period from the early 1900s to World War II has been considered the "golden age" of genetics, scientists still had not determined that DNA, and not protein, was the hereditary material. However, during this time a great many genetic discoveries were made and the link between genetics and evolution was made.

Friedrich Meischer in 1869 isolated DNA from fish sperm and the pus of open wounds. Since it came from nuclei, Meischer named this new chemical, nuclein. Subsequently the name was changed to nucleic acid and lastly to deoxyribonucleic acid (DNA). Robert Feulgen, in 1914, discovered that fuchsin dye stained DNA. DNA was then found in the nucleus of all eukaryotic cells.

During the 1920s, biochemist P.A. Levene analyzed the components of the DNA molecule. He found it contained four nitrogenous bases: cytosine, thymine, adenine, and guanine; deoxyribose sugar; and a phosphate group. He concluded that the basic unit (nucleotide) was composed of a base attached to a sugar and that the phosphate also attached to the sugar. He (unfortunately) also erroneously concluded that the proportions of bases were equal and that there was a tetranucleotide that was the repeating structure of the molecule. The nucleotide, however, remains as the fundemantal unit (monomer) of the nucleic acid polymer. There are four nucleotides: those with cytosine (C), those with guanine (G), those with adenine (A), and those with thymine (T).


Molecular structure of three nirogenous bases. In this diagram there are three phosphates instead of the single phosphate found in the normal nucleotide.

During the early 1900s, the study of genetics began in earnest: the link between Mendel's work and that of cell biologists resulted in the chromosomal theory of inheritance; Garrod proposed the link between genes and "inborn errors of metabolism"; and the question was formed: what is a gene? The answer came from the study of a deadly infectious disease: pneumonia. During the 1920s Frederick Griffith studied the difference between a disease-causing strain of the pneumonia causing bacteria (Streptococcus peumoniae) and a strain that did not cause pneumonia. The pneumonia-causing strain (the S strain) was surrounded by a capsule. The other strain (the R strain) did not have a capsule and also did not cause pneumonia. Frederick Griffith (1928) was able to induce a nonpathogenic strain of the bacterium Streptococcus pneumoniae to become pathogenic. Griffith referred to a transforming factor that caused the non-pathogenic bacteria to become pathogenic. Griffith injected the different strains of bacteria into mice. The S strain killed the mice; the R strain did not. He further noted that if heat killed S strain was injected into a mouse, it did not cause pneumonia. When he combined heat-killed S with Live R and injected the mixture into a mouse (remember neither alone will kill the mouse) that the mouse developed pneumonia and died. Bacteria recovered from the mouse had a capsule and killed other mice when injected into them!


0 comments:

Post a Comment